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Abstract 
We describe the design and implementation of a wearable 
sensor and its data streams with applications in grappling 
martial arts. We classify eight martial arts positions using 
sensor data from one compound device possessing a gyro-
scope and accelerometer. The algorithm development 
process includes 90 minutes of labelled training data, and 
the evaluation of several machine learning algorithms.  
Combining Random Forest classifiers with a Hidden 
Markov Model method is shown to significantly improve 
the classification performance. All data-sets and application 
code have been made available publicly.  

I. Introduction 
Wearable inertial sensors such as accelerometers and gyro-
scopes are becoming widespread, as most modern smart-
phones come equipped with them. These sensors can be 
used to analyze human motion in a variety of contexts, 
from healthcare to entertainment. In this paper we consider 
applications for sports, specifically grappling martial arts. 
 There is a growing demand for performance evaluation 
tools which leverage inertial data to provide practitioners 
with rapid feedback on their technique and training habits. 
Such coaching devices used to be the tools of only elite 
athletes due to prohibitive costs, but have become more 
accessible due to lower sensor prices. This growing de-
mand is evidenced by the emergence of multiple main-
stream wearable companies in this space in recent years 
[21][22][23]. To provide useful feedback to users, it is of-
ten necessary to understand subtle movement patterns and 
sequences for a given activity. Distinguishing between sub-
tly different movements and positions is challenging. 
 This paper lays out an approach for overcoming the 
above mentioned classification challenges in the realm of 
grappling martial arts, chiefly submission wrestling and 
Brazilian Jiu-Jitsu. We built a prototype wearable for prac-
titioners, and ran extensive tests to optimize for key posi-
tion detection.  Crucially, the prototype was built to be 
commercially viable, which meant that we only used one 
motion sensor due to safety and cost constraints. This had 
the effect of keeping the projected manufacturing costs 
low, but made the classification challenge far harder. We 
have made all our recorded data and application code pub-
licly available[24], along with video demonstrations of the 
prototype being used in a variety of live scenarios [25]. 

II. Related Work 
Research into Human Activity Recognition can be clus-
tered into two main areas: analysis of video recordings [3]
[4][19], and the use of inertial sensors [1][2][7].  Our work 
falls into the inertial sensor category.  
 Multiple sensors attached to different body positions are 
the most common solutions[12], with accelerometers being 
the most frequently used  type of sensor deployed [1]  
 Sensor fusion, particularly of accelerometers and gyro-
scopes, is widely acknowledged as resulting in higher ac-
curacy when conducting motion analysis on time series 
data from inertial sensors [6][8][20], while the usefulness 
of adding magnetometer data remains unclear [6]. We se-
lected the fusion of accelerometer and gyroscope data. 
 Regarding algorithm composition, the use of both en-
semble learning methods, such as Random Forest [1][14] 
and Hidden Markov Models [5][13] for classifying human 
motion from accelerometer data has been explored, but 
their use together is relatively obscure. 
 Other commonly used classification methods for human 
motion include Support Vector Machines, K-Nearest 
Neighbor, and Naive Bayes [6], and we considered these in 
our initial experiments. 
 In the following sections we describe how we created 
the prototype wearable for exploring these motion classifi-
cation approaches, followed by results. 

III. Prototype Creation 
We set out to develop a wearable training shirt that could 
effectively classify eight key positions from Brazilian Jiu-
Jitsu during training activity:  

1: Your guard 
2: Opponent guard 
3: Your back control 
4: Opponent back control 
5: Your mount 
6: Your side control 
7: Opponent mount/side control 
8: Other 

These positions represent the fundamental ground control 
positions. We specified “Other” for training motion that did 
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not match the above positions (e.g. intricate sub-positions, 
or “scrambles”) and also motion that did not represent 
training (e.g. standing around watching, sitting doing noth-
ing).  
 Grappling martial arts consistently place an extremely 
high level of stress on the user (and hence the wearable). 
Furthermore, we were interested in testing a prototype with 
a potential mass-market price range. These constraints 
meant that we opted to embed just a single sensor in the 
wearable, thus allowing for greater safety, comfort and a 
potentially lower retail price. Primarily due to safety con-
cerns (because limbs are constantly grabbed and rubbed), 
we opted to place this sensor slightly below the center of 
the torso. The torso area is a location that has been shown 
to be effective for classifying activities such as standing 
and squatting [1][12], and placing the sensor below the 
sternum increased comfort for users. We used a commer-
cially available Bluetooth Low Energy sensor, the 
“MetaWear C” from mbientlab, which has a board size of 
24mm diameter x 2.0mm, and an inbuilt Bosch BMI160 
triaxial accelerometer and gyroscope [15]. 

Figure 1: Prototype Sensor and Case Components 

!  

Time series inertial data was streamed from the board’s 
accelerometer and gyroscope to an Android mobile appli-
cation, using the mbientlab Android API [16]. The sensor 
was placed in a padded neoprene ‘pouch’, inside a com-
monly worn skin tight t-shirt called a rashguard. The pouch 
had dimensions of 7cm x 7cm, and was located approxi-
mately 5cm below the sternum. The pouch and sensor were 
marked to ensure that the sensor orientation was consistent 
throughout testing. 
 To begin recording motion, users would open the An-
droid app we developed and activate the sensor’s ac-
celerometer and gyroscope. This would then trigger the 
sensor readings to be streamed and saved to the phone. 
Once the user finished their training session, they would 
send their logged data for analysis on our server via HTTP. 
 Our data analysis server was written in Python, due to 
the maturity of both its machine learning libraries and the 
Scientific Python stack. The server ran the uploaded user 
data through our classification algorithm and returned a 
breakdown of the amount of time spent in the respective 
eight positions for the given training session. The training 
principle here is that allowing a practitioner to better un-

derstand how they are spending their time whilst training 
will enable them to optimize their key focus areas and ad-
dress their weaknesses, a practice that has been noted in 
studies on high level athletes in other sports [26]. 

IV. Data Collection and Processing 
Approximately ninety minutes of time-series sensor data 
was collected and manually labelled for training purposes. 
Training data was collected one classification position at a 
time, allowing for simple batch labelling. Additional test 
data with mixed positions and transitions was  collected 
with a stop watch and video camera. Data was collected 
from three separate male practitioners of similar size (170-
180cm, 60-70kg) and age (28-35).   
 The data was streamed at a frequency of 25Hz. There are 
studies where similar frequencies have been shown to be 
sufficient for activity recognition [8][9], though 50Hz is 
more common. In our case we opted to use this frequency 
to better preserve the coin-cell battery on the sensor. 
 A key part of the classification process is the search for 
effective data features. Previous similar research has 
shown the importance of selecting the correct size of slid-
ing window during data sampling. We opted for 1.6 sec-
onds, with a 50% overlap, based on previous studies [5]
[10][11] 
 Feature selection was a crucial part of our work, and the 
result of much gradual optimization. The accelerometer 
and gyroscope both report values along their three dimen-
sions (x, y, z), with the accelerometer reporting accelera-
tion in meters per second squared (m/sec2) and the gyro-
scope showing the rate of rotations in radians per second 
(rad/sec) along each axis. 
 We focused on standard statistical features, and best 
practice motion analysis data features [20]:   

- Mean  
- Median 
- Max/Min 
- Sum 
- Standard deviation 
- Tilt 
- Magnitude 
- Root sum square 
- Root mean square 

All calculations were done on a rolling window basis. 
Standard statistical data features were applied to raw data 
from all three axes of both the accelerometer and the gyro-
scope. Magnitude, root sum square and root mean square 
were recorded by sensor, giving two data features each. 
 We also took polynomials of degree three for every fea-
ture, although it did impact the speed of the classifier 
(which is why we did not attempt to use polynomials of a 
higher degree). In total, we worked with 54 data features 
(162 when including in the use of polynomials). 

Table 1 summarizes the ten features with the most signifi-
cant impact on algorithm performance:  



Table 1: Ten Most Significant Data Features 

V. Algorithm Composition 
In order to analyze and classify the pre-processed data, we 
applied different classification algorithms to compare per-
formance. We used 10-fold cross-validation to balance our 
accuracy calculations. We evaluated the following com-
monly used classifiers from previous human motion recog-
nition research [6]: 
qLogistic regression, K Nearest Neighbors, Support Vector 
Machine, Decision Tree, Random Forest, Naïve Bayes and 
Adaboost. 
 We evaluated the performance of these classifiers using 
the scikit-learn cross_val_score method, checking for accu-
racy. The results are summarised in Table 2 below: 

Table 2: Classification Algorithm Accuracy Comparison 

The above results were gathered after significant parameter 
optimization, with the optimal number of nodes for the 
Random Forest classifier falling at approximately 5000. 
The Random Forest algorithm gave us the highest and 
most consistent levels of accuracy, which other research 
has also found [1][2][18] 

Hidden Markov Model 
Despite the overall high accuracy of the Random Forest 
algorithm for classifying different body positions, high 
false-positive  rates were detected for specific grappling 
positions which, in terms of their position in 3D space, are 
very similar. 

Figure 2: Comparison of Accelerometer Z-Axis Readings 

Data Feature
Impact on 
Classifica-

tion

Accelerometer Z-Axis rolling 
mean 6.9%

Accelerometer Z-Axis rolling 
sum 6.5%

Accelerometer Z-Axis rolling 
maximum 6.3%

Accelerometer Z-Axis rolling 
median 5.4%

Accelerometer Z-Axis rolling 
minimum 5.2%

Accelerometer X-Axis rolling 
sum 3.9%

Accelerometer X-Axis rolling 
mean 3.8%

Accelerometer X-Axis tilt 3.6%

Accelerometer X-Axis rolling 
minimum 3.1%

Accelerometer X-Axis rolling 
max 3.1%

Classifica-
tion  

Algorithm

Mean Accuracy 
from 10-fold 

Cross Validation

Accuracy 
95% 

confidence 
interval

Logistic 
Regression 59% +/- 13%

K Nearest 
Neighbors 44% +/- 22%

Support 
Vector 
Machine 34% +/- 3%

Decision 
Tree 66% +/- 21%

Random 
Forest 72% +/- 20%

Naïve 
Bayes 31% +/- 12%

AdaBoost 59% +/- 19%



Figure 2 illustrates this challenge with raw data from the 
accelerometer z-axis: The “Your mount” and “Your closed 
guard” positions are clustered differently, whereas “Your 
closed guard” and “opponent mount” overlap a great deal. 
However, these overlapping positions in grappling martial 
arts are markedly different, and the inability to differentiate 
between them would render the wearable highly impracti-
cal. An example of this is shown in Figure 3, where if the 
user in white is wearing the sensor, in the picture on the 
left, they are in a dominant position (mount), and in the 
picture on the right they are in a neutral position (guard).  
However, white’s position in space is very similar, as in 
both instances he/she is on their knees, upright.  

Figure 3: Challenging Positions to Discern 
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We sought a way to address this challenge, and generally 
improve the overall accuracy of our method, by injecting 
some context awareness and domain-specific knowl-
edge. Since our prototype was not required to give real-
time predictions, we were able to retrospectively cor-
rect certain unlikely errors using a Hidden Markov 
Model approach. For this we used the hmmlearn li-
brary, which is set of Hidden Markov Model algo-
rithms written in Python [17]. 
 We setup a Multinomial Hidden Markov Model 
since we were working with discrete existing predic-
tion data. We assumed that our predictions operated as 
a discrete Markov chain, where the random forest out-
puts are the observations, and the correct classifications 
are the hidden states. This led us to assign the follow-
ing key attributes of the model: 

- N components: The number of our classification 
states (eight) 

- Start probabilities: an N x 1 matrix of the likelihood 
of a given state being the initial state 

- Transition matrix values: N x N matrix 
- Emission matrix values: N x N matrix 

We made use of the Viterbi algorithm [27] to decode the 
sequence of observations to find the hidden states (in this 
case, the eight motion classifications). With the Viterbi 
algorithm, every observation value from the random forest 
classifier is re-evaluated based on the previous observation. 
Since many grappling positions occur in predictable se-
quences (with some sequence permutations being highly 
unlikely), we used our domain specific knowledge to as-
sign probability weightings for a) transitions between posi-
tions and b) a given position “emitting” the next position. 
This additional step allowed us to take the wider context 
into account to a greater degree than the Random Forest 
classifier on its own.  

Future Post Processing 

The key draw back of the HMM adjustment is that if the 
initial value given is incorrect, then the “corrections” ac-
centuate errors, rather than reducing them. One technique 
we explored to reduce the likelihood of this (highly unde-
sirable) possibility, was isolating particular motion se-
quences and then scanning for that particular sequence for 
all data classified a certain way. For example, instances of 
a user standing up only occur during specific positions. If a 
stand up occurs and the initial classification is not of a po-
sition where stand-ups typically occur, it is likely a mis-
classification has occurred.  

VI. Results 
The comparison shown below in Figure 4 was based on a 
specifically created test sequence, which three test users 
were recorded moving through. This test sequence in-
volved all eight martial arts positions over the course of 
approximately two minutes. It tested classification accura-
cy in a much more realistic setting, including transitions 
between different positions. This represented a highly chal-
lenging classification sequence (resulting in lower classifi-
cation accuracy generally).  

Figure 4: Accuracy Comparison of Random Forest only and Ran-

dom Forest Combined with HMM 

Classifications were run fifty times for each data set and 
averaged. The results show an improvement in average 
accuracy of 8% with HMM post-classification adjustment. 

 The standard error from the mean for the results in Fig-
ure 4 was between 0.5% and 2%. A paired t-test was con-
ducted on the average accuracy results for the random for-
est test only and the random forest combined with HMM. 
Taking the null hypothesis that the two methods have the 
same  mean accuracy, the t-test p values summarised in 
Table 3 show that we can reject the null hypothesis with 
strong certainty. 



Table 3: T-Test p Values and Cohen’’s d Value Summary  

VII. Conclusion and Further Research 

Motion classification using the approach outlined in this 
paper, combining a Random Forest method with a Hidden 
Markov optimisation, yields a significantly higher level of 
accuracy than using the Random Forest in isolation. Higher 
levels of accuracy allow for more nuanced motion analysis, 
which in turn enables practitioners to optimise their train-
ing with the aid of wearable technology. 
 Although the prototype built addresses a very specific 
activity, the techniques deployed are widely applicable. 
These findings were collected from a single sensor because 
grappling martial arts place so much stress on the body and 
wearable technology. Many other sports or activities would 
afford opportunities to use the same techniques with multi-
ple sensors. Furthermore, the collection and labelling of 
data for martial arts is particularly time-consuming and 
challenging. Other activities would be able to easily ac-
quire larger datasets, which would further increase accura-
cy and might open up new techniques requiring larger data 
quantities, such as recurrent neural networks. 
 Further study is required to understand the impact of 
very different body shapes on accuracy, as test participants 
were of a similar size, and were all male. Our technique of 
isolating specific motions and retrospectively updating 
motion predictions based on their recent detection also 
showed promise, and is a method that could also prove 
useful in the classification of other activities. 
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